

Class Quiz:
Factor Completely:
(1)
$$30 x^{3} - 120 x$$

 $= 30x(x^{2} - 4)$
 $= 30x(x+2)(x-2)$
(2) $x^{2} - 4x - 32$
 $= (x - 8)(x + 4)$
 $1 \cdot 32$
 $2 \cdot 16$
(1) $30 x^{3} - 120 x$
 $= 2x(a - b) + y(a - b)$
 $= (a - b)(2x + y)$
(2) $x^{2} + 36$
 $= x^{2} + 6^{2}$
 $A^{2} + B^{2}$ Prime

$$factor Completely:$$
 Solve:

 $(x + 8)(x - 3)$
 $x^2 - 64 = 0$
 $= (x + 8)(x - 3)$
 $\chi^2 - 8^2 = 0$
 $-1 \cdot 24$
 $\chi^2 - 8^2$
 $-2 \cdot 12$
 $\pi^2 - 8^2$
 $-3 \cdot 8$
 $\chi + 8)(x - 8) = 0$
 $-4 \cdot 6$
 $\chi - 8 = 0$
 $\chi - 8 = 0$
 $\chi - 8 = 0$
 $\chi - 8 = 8$
 $\chi - 8 = 8$
 $\chi - 8 = 8$
 $\chi - 8 = 8$

Use
$$A^{3}+B^{3}$$
 or
 $A^{3}-B^{3}$ to Sactor
 $8\chi^{3}+27$
 $=(2\chi)^{3}+(3)^{3}$
 $=(2\chi+3)(4\chi^{2}-6\chi+9)$
 $\begin{cases} -6,2 \end{cases}$
Solve
 $(\chi+1)(\chi+3)=15$
Hint: FOIL & Simplify
 $\chi^{2}+3\chi+\chi+3=15$
 $\chi^{2}+4\chi+3=15$
 $\chi^{2}+4\chi-12=0$
By Z.F.R.
 $\chi+6=0$ or $\chi-2=0$
 $\chi=-6$ $\chi=2$

Use
$$A^{3} + B^{3}$$
 or
 $A^{3} - B^{3}$ ts
Solve
 $2^{2} + (\chi + 2)^{2} = 100$
Hint: Simplify First
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 100$
 $2\chi^{2} + 4\chi + 4 = 100$
 $\chi^{2} + 2\chi - 48 = 0$
 $\chi + 8 + (\chi - 6) = 0$
 $\chi + 8 = 0$ or $\chi - 6 = 0$
 $\chi = -8 \{ -8, 6 \}$ $\chi = 6$

Use
$$A^{2}+2AB+B^{2}$$
 or $A^{2}-2AB+B^{2}$ to
 $A^{2}-2AB+B^{2}$ to
 $factor 25\chi^{2}+30\chi+9$.
 $(5\chi)^{2}$ +(3)
 $2\chi^{2}+4\chi+\chi+2=20$
 $4(A\pm B)^{2}$
 $=(5\chi+3)^{2}$
 $2\chi^{2}+5\chi+2=-20=0$
 $2\chi^{2}+5\chi+2=-20=0$
 $2\chi^{2}+5\chi-18=0$
 $-1, 36$
 $2\chi^{2}-4\chi+9\chi-18$
 $2\chi^{2}-4\chi+9\chi-18$
 $-3\xi-2, 18$
 $-3\xi-2, 12$
 $-41, 9$
 $-2\xi-1, 12$
 $-41, 9$
 $-2\xi-2, 12$
 $-41, 9$
 $-4, 6$
 $-2\chi^{2}-2, 12$
 $-41, 9$
 $-4, 6$
 $-2\chi^{2}-2, 2\chi^{2}-2, 2\chi^{2}$

Use
$$A^{2} + 2AB + B^{2}$$
 or
 $A^{2} - 2AB + B^{2}$ to factor
 $49x^{2} - 112xy + 64y^{2}$
 $= (7x) - 2(7x)(xy) + (8y)^{2}$
 $= (7x - 8y)^{2}$
 $2x^{2} - 12x - x + 6$
 $= 2x(x - 6) - 1(x - 6)$
 $= (x - 6)(2x - 1)^{2}$
Solve
 $2x^{2} + 6 = 13x$
 $2x^{2} + 6 - 13x = 0$
 $2x^{2} - 13x + 6 = 0$
 $x - 12, -1$
 $(2x - 1)(x - 6) = 0$
 $x = \frac{1}{2}$
 $x = 6$
 $\frac{1}{2}, 6$

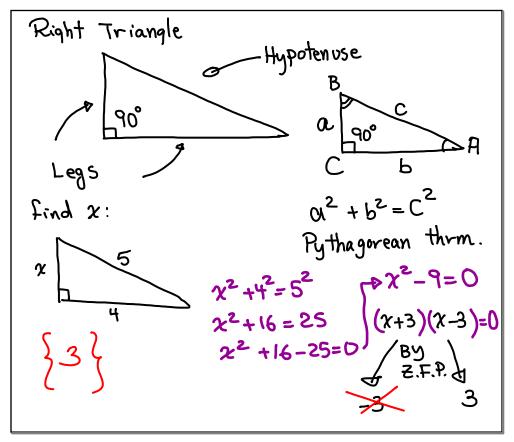
Class Quiz
() factor
$$2\chi^2 - 7\chi - 9 = 2\chi^2 - 9\chi + 2\chi - 9$$

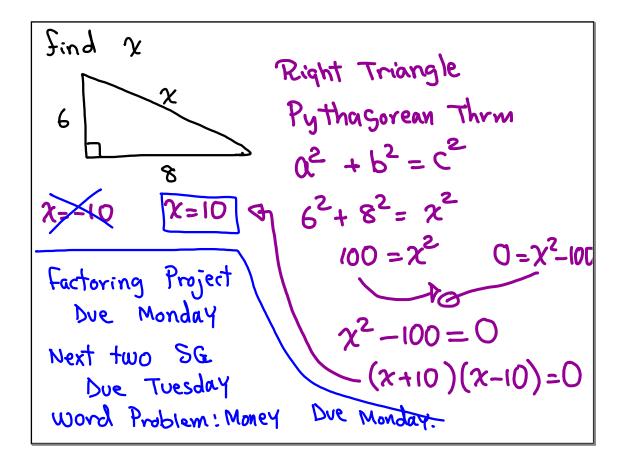
 $F = -78$
 $= \chi(2\chi - 9) + 1(2\chi - 9)$
 $S = -7 - 9 \neq 2 - 78$
 $= (2\chi - 9)(\chi + 1)$
(2) Solve $(3\chi - 5)(\chi + 2) = 0$
 $RHS = 0$ $3\chi - 5 = 0$ $\chi + 2 = 0$
 LHS factored $\chi = 5/3$ $\chi = -2$
by Z.F.R.
(3) Solve $\chi^2 = 20\chi - 100$
 $\chi^2 - 2.0\chi + 100 = 0$
 $F = 100$
 $\chi^2 - 2.0\chi + 100 = 0$
 $\chi^2 - 10\chi - 10\chi + 100$
 $S = -20$ 100
 $\chi(\chi - 10) - 10(\chi - 10)$
 $Repeated
 $\chi = 7.0$
 $\chi(\chi - 10)(\chi - 10) = 0$
By Z.F.P.$

The product of two consecutive integers
is 56. Find all such integers.

$$p \chi \notin \chi + 1$$

 $p \chi (\chi + 1) = 56$
 $\chi^2 + \chi = 56$
 $\chi^2 + \chi - 56 = 0$
 $(\chi + 8)(\chi - 7) = 0$
By $Z \cdot F \cdot P$.
 $\chi + 8 = 0$ $\chi - 7 = 0$
 $\chi = -8$ $\chi = 7$


May 17, 2018


The Sum of squares of two cons. add integers
is 34. Find all such integers.

$$\chi^{2} + (\chi + 2)^{2} = 34$$

 $\chi^{2} + (\chi + 2)^{2} = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi + 4 = 34$
 $\chi^{2} + \chi^{2} + 4\chi^{2} + 4\chi^{2}$

The length of a vectangle is 1 m shorter
than 3 times its width.
(i) Draw & label Such rectangle

$$2 \lim_{X \to 1} 20m$$

(i) Draw & label Such rectangle
 $R = LW$ R=x(3x-1) R=3x²-x
(i) find its dimensions if the area is 140m².
 $R = 140$ $1,-420$ $-3x^{2}+20x-2x-140$
 $3x^{2}-x = 140$ $2,-210$ $x(3x+20)-7(3x+20)$
 $3x^{2}-x = 140 = 0$ $3,-140$ $(3x+20)(x-7)=0$
 -420 $10,-42$ 5 4
 $R = 140$ $1,-420$ $x(3x+20)-7(3x+20)$
 $3x^{2}-x = 140 = 0$ $3,-140$ $(3x+20)(x-7)=0$
 $10,-42$ 5 4
 $R = 140$ $10,-42$ 5 4
 $R = 140$ $R = 140$

